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Abstract
Solving the s-wave Dirac equation for the Eckart potential with spin and
pseudospin symmetry by using the supersymmetric quantum mechanics
approach and function analysis method, we obtain the exact energy equation
and corresponding two-component spinor wavefunctions. The restriction
conditions of existing bound states are analysed.

PACS numbers: 03.65.Ge, 03.65.Pm, 02.30.Gp

1. Introduction

It is well known that the exact solutions of the Dirac equation with mixed potentials play an
important role in nuclear physics, such as in a realistic nuclear system where the nucleons
are described to move independently in the relativistic mean field with the attractive scalar
potential and repulsive vector potential. In recent years, there has been an increased interest in
finding analytic solutions of the Dirac equation for some typical potentials under the special
cases of spin symmetry and pseudospin symmetry [1–5]. Ginocchio [1] solved the Dirac
equation for the triaxial, axial and spherical harmonic oscillators with spin symmetry. Lisboa
et al [2, 3] investigated the analytical solutions of the Dirac equation for the generalized
relativistic harmonic oscillator with spin symmetry and pseudospin symmetry. In [4], Chen
et al solved the Dirac equation for two kinds of harmonic oscillator potentials with exact spin
symmetry and pseudospin symmetry, respectively, and discussed the origin of pseudospin
symmetry and its breaking in real nuclei in the relativistic mean field theory. Guo et al [5]
studied the s-wave Dirac equation for the Woods–Saxon potential with spin and pseudospin
symmetry. The condition of the difference between the vector and scalar potentials being
a constant, i.e. V (r) − S(r) = constant, leads to the spin symmetry that is relevant for
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mesons [6]. Based on the relativistic mean field theory, Ginocchio [7] showed that the
pseudospin symmetry in nuclei could arise from nucleons moving in a relativistic mean field
which has the near equality in magnitude of an attractive scalar potential S(r), and repulsive
vector potential V (r), S(r) ∼ −V (r). Generally speaking, the pseudospin symmetry occurs
for V (r) + S(r) = constant in the Dirac equation [8]. Very recently, Alhaidari et al [9] have
investigated in detail the physical interpretation on the three-dimensional Dirac equation in
the cases of spin symmetry limitation (V (r)−S(r) = 0) and pseudospin symmetry limitation
(V (r)+S(r) = 0). Ginocchio [10] showed that a Dirac Hamiltonian with the scalar and vector
harmonic oscillator potentials in the case of V (r) − S(r) = 0 has not only a spin symmetry
but also an U(3) symmetry, and a Dirac Hamiltonian with the scalar and vector harmonic
oscillator potentials in the case of V (r) + S(r) = 0 has not only a pseudospin symmetry but
also a pseudo-U(3) symmetry.

Recently, Zou et al [11] have investigated the Dirac equation with equally mixed potentials
for the Eckart potential. The Eckart potential introduced by Eckart [12] has been widely used
in physics [13] and chemical physics [14, 15]. The Eckart potential and its PT-symmetric
version are the special cases of the five-parameter exponential-type potential model [16, 17].
In [11], the authors have only considered the case of the spin symmetry limitation, i.e., set the
difference between the vector and scalar potentials to zero. Hence, it is of considerable interest
to study the Dirac–Eckart problem with general spin symmetry and pseudospin symmetry.

In the present work, we investigate the analytic solutions of the Dirac equation for the
Eckart potential with spin and pseudospin symmetry in terms of the supersymmetric quantum
mechanics approach and function analysis method. The corresponding results for the case of
the Dirac equation with equal scalar and vector Eckart potentials are only the special cases of
the results given in this work.

2. Bound state solutions

The Dirac equation with both the scalar potential S(r) and the vector potential V (r) can be
written as (h̄ = c = 1)

{α· p + β[M + S(r)]}�(r) = [E − V (r)]�(r), (1)

where E denotes the energy, and M denotes the mass. For a particle in a spherical field,
the total angular momentum operator J, and spin–orbit matrix operator K = −β(σ · L + 1)

commute with the Dirac Hamiltonian, where β, σ and L are, respectively, the Dirac matrix,
Pauli matrix and orbital angular momentum. The eigenvalues of K are k = ±(j + 1/2) with
– for aligned spin (s1/2, p3/2, etc) and + for unaligned spin (p1/2, d3/2, etc). The complete set
of the conservative quantities can be taken as (H,K, J 2, Jz); the spinor wavefunctions can be
classified according to their angular momentum j , k, and the radial quantum number n, and
can be written in the form

�nk = 1

r

[
Fnk(r)Y

l
jm(θ, φ)

iGnk(r)Y
∼
l
jm(θ, φ)

]
, (2)

where the upper and lower radial functions Fnk(r) and Gnk(r) are real square-integral functions,
Y l

jm(θ, φ) and Y l̃
jm(θ, φ) are the spherical harmonic functions, and m is the projection of

angular momentum on the third axis. The orbital angular momentum quantum numbers l

and l̃ refer to the upper and lower components, respectively. For a given k = ±1,±2, . . . ,

j = |k| − 1/2, l = |k + 1/2| − 1/2, l̃ = |k − 1/2| − 1/2. Substituting equation (2) into
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equation (1), we obtain two coupled differential equations for the upper and lower radial
wavefunctions Fnk(r) and Gnk(r),(

d

dr
+

k

r

)
Fnk(r) = [M + Enk + S(r) − V (r)]Gnk(r), (3a)

(
d

dr
− k

r

)
Gnk(r) = [M − Enk + S(r) + V (r)]Fnk(r). (3b)

Eliminating Gnk(r) in equation (3a) and Fnk(r) in equation (3b), we obtain the following two
second-order differential equations for the upper and lower components,(

d2

dr2
− l(l + 1)

r2
− (M + Enk − �)(M − Enk + �) +

d�
dr

(
d
dr

+ k
r

)
M + Enk − �

)
Fnk(r) = 0, (4a)

(
d2

dr2
− l̃(l̃ + 1)

r2
− (M + Enk − �)(M − Enk + �) −

d�
dr

(
d
dr

− k
r

)
M − Enk + �

)
Gnk(r) = 0, (4b)

where �(r) = V (r) − S(r) and �(r) = V (r) + S(r). In reducing equations (4a) and (4b),
we have applied the relations k(k + 1) = l(l + 1) and k(k − 1) = l̃(l̃ + 1), respectively.

(a) We consider the case of exact spin symmetry, i.e., d�
dr

= 0 or � = C = constant, and
reduce equation (4a) into the following form:(

d2

dr2
− l(l + 1)

r2
− (M + Enk − �)(M − Enk + �)

)
Fnk(r) = 0. (5)

From equation (5), we can see that the energy eigenvalues, Enk , depend only on n and l,
i.e., Enk = E(n, l(l + 1)). For l �= 0, the states with j = l ± 1/2 are degenerate. This is
a SU(2) spin symmetry. We take the Eckart potential [12] as the �(r),

�(r) = V1 cosech2 αr − V2 coth αr, (6)

where α is a real positive parameter. With �(r) = V (r) − S(r) = C, we obtain
V (r) = 1

2 (�(r) + C) and S(r) = 1
2 (�(r) − C). Using the function �(r) given in

equation (6), we find that the potentials V (r) and S(r) have non-vanishing values at
infinity. However, when C = V2 and C = −V2, the potentials V (r) and S(r) vanish at
infinity, respectively. If C = V2 = 0, then both potentials V (r) and S(r) vanish at infinity.
Substituting equation (6) into equation (5), we obtain a Schrödinger-like equation for the
s-wave (l = 0, i.e., k = −1),(

− d2

dr2
+ Ṽ 1 cosech2 αr + Ṽ 2 coth αr

)
Fn,−1(r) = ẼFn,−1(r), (7)

where we have introduced the parameters Ṽ 1 = (M + En,−1 − C)V1, Ṽ 2 =
(M + En,−1 − C)V2 and Ẽ = E2

n,−1 − M2 + C(M − En,−1). We use the supersymmetric
quantum mechanics method and shape invariance approach to solve equation (7). The
ground-state function for the upper radial component Fnk(r) can be written in the form

F0,−1(r) = exp

(
−

∫
W(r) dr

)
, (8)

where W(r) is called a superpotential in supersymmetric quantum mechanics [18].
Substituting equation (8) into equation (7), we obtain the following equation for W(r),

W 2(r) − dW(r)

dr
= Ṽ 1 cosech2 αr − Ṽ 2 coth αr − Ẽ0, (9)
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where Ẽ0 is the ground-state energy. Equation (9) is a nonlinear Riccati equation. Putting
the superpotential W(r) as

W(r) = Q1 +
Q2

e2αr − 1
, (10)

and substituting this expression into equation (9), we obtain the following relations:

Q2
1 = −Ẽ0 + Ṽ 2, (11a)

2Q1Q2 + 2αQ2 = 4Ṽ 1 + 2Ṽ 2, (11b)

Q2
2 + 2αQ2 = 4Ṽ 1. (11c)

Substituting equation (10) into equations (8), we obtain the ground-state function F0,−1(r)

F0,−1(r) = e−Q1r

(
e2αr

e2αr − 1

)Q2
2α

. (12)

In this work, we deal with the bound state solutions, i.e., the radial part of the wavefunction
�nk must satisfy the boundary conditions that Fnk(r)/r becomes zero when r → ∞, and
Fnk(r)/r is finite at r = 0. Obviously, only when r → ∞, Fn,−1(r) is finite, and
Fn,−1(r) = 0 at the origin point r = 0; the radial wavefunction Fn,−1(r)/r can satisfy
the boundary conditions. In order to make the upper component F0,−1(r) satisfy the
regularity conditions, we can obtain from equation (12) that (Q1 − Q2) > 0 and Q2 < 0.
Considering the boundary conditions and solving equations (11a)–(11c), we obtain

Q1 = Ṽ 2

Q2
+

Q2

2
, (13a)

Q2 = −α


1 +

√
1 +

4Ṽ 1

α2


 = −2αη, (13b)

where the parameter η is defined as the combination of parameters, η = 1
2

(
1 +

√
1 + 4Ṽ 1

α2

)
.

With the help of equations (11a) and (13a), the corresponding ground-state energy and
superpotential can be expressed as

Ẽ0 = −
[

Ṽ 2

Q2
+

Q2

2

]2

+ Ṽ 2, (14)

W(r) = −
(

Ṽ 2

Q2
+

Q2

2

)
+

Q2

e2αr − 1
. (15)

Using the superpotential W(r) given in equation (15), we can produce the following two
supersymmetric partner potentials:

Ṽ +(r) = W 2(r) +
dW(r)

dr
=

(
Ṽ 2

Q2
+

Q2

2

)2

+
2Ṽ 2 + Q2

2 − 2αQ2

e2αr − 1
+

Q2
2 − 2αQ2

(e2αr − 1)2
, (16a)

Ṽ −(r) = W 2(r) − dW(r)

dr
=

(
Ṽ 2

Q2
+

Q2

2

)2

+
2Ṽ 2 + Q2

2 + 2αQ2

e2αr − 1
+

Q2
2 + 2αQ2

(e2αr − 1)2
. (16b)
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With the help of expressions (16a) and (16b), we can easily verify that the partner
potentials Ṽ +(r) and Ṽ −(r) satisfy the following relationship,

Ṽ +(r, a0) = Ṽ −(r, a1) + R(a1), (17)

where a0 = Q2, a1 is a function of a0, i.e., a1 = f (a0) = Q2 − 2α, and the reminder
R(a1) is independent of r , R(a1) = (

Ṽ 2
a0

+ a0
2

)2 − (
Ṽ 2
a1

+ a1
2

)2
. From equation (17), we can

see that the two partner potentials Ṽ +(r) and Ṽ −(r) have the similar shapes and they are
shape-invariant potentials in the sense of [19]. Applying the shape invariance approach
[19], we can determine the energy spectra of the potential Ṽ −(r),

Ẽ
(−)
0 = 0, (18a)

Ẽ(−)
n =

n∑
k=1

R(ak) = R(a1) + R(a2) + · · · + R(an)

=
(

Ṽ 2

a0
+

a0

2

)2

−
(

Ṽ 2

a1
+

a1

2

)2

+

(
Ṽ 2

a1
+

a1

2

)2

−
(

Ṽ 2

a2
+

a2

2

)2

+ · · ·

+

(
Ṽ 2

an−1
+

an−1

2

)2

−
(

Ṽ 2

an

+
an

2

)2

=
(

Ṽ 2

a0
+

a0

2

)2

−
(

Ṽ 2

an

+
an

2

)2

=
(

Ṽ 2

Q2
+

Q2

2

)2

−
(

Ṽ 2

Q2 − 2nα
+

Q2 − 2nα

2

)2

, (18b)

where the quantum number n = 0, 1, 2, . . . . From equations (9) and (16b), we get the
following relation:

Ṽ (r) = Ṽ 1 cosech2 αr + Ṽ 2 coth αr = Ṽ −(r, a0) + Ẽ0. (19)

With the help of equations (14), (18) and (19), we find the solution for Ẽ in equation (7),

Ẽ = Ẽ0 + Ẽ(−)
n = −

[
Ṽ 2

Q2 − 2nα

]2

− (Q2 − 2nα)2

4
. (20)

Substituting equation (13b) into equation (20) and using Ẽ = E2
n,−1−M2+C(M − En,−1),

we obtain the energy equation for Eckart potential with spin symmetry in the Dirac theory,

M2 − E2
n,−1 − C(M − En,−1) = α2(n + η)2 +

(M + En,−1 − C)2V 2
2

4α2

1

(n + η)2
, (21)

where the parameter η is given by η = 1
2

(
1 +

√
1 + 4(M+En,−1−C)V1

α2

)
.

If we take C = 0 and put V1 → 2V1 and V2 → 2V2, i.e., S(r) = V (r) = �(r), the
energy equation (21) becomes

M2 − E2
n,−1 = α2(n + η)2 +

(M + En,−1)
2V 2

2

α2

1

(n + η)2
, (22)

where η = 1
2

(
1 +

√
1 + 8(M+En,−1)V1

α2

)
. Equation (22) is just expression (21) of [11], which

is the energy equation for the Eckart potential with equally mixed potentials in the Dirac
theory.
With the help of the superpotential W(r) given in equation (15) and the ground-state
function F0,−1(r) given in equation (12), we can yield the unnormalized excited state



7742 C-S Jia et al

spinor wavefunctions by using the operator method proposed by Dabrowska et al [20].
The corresponding normalization coefficients can be determined by applying the explicit
recursion relations on the normalization coefficients of wavefunctions given in [21].
Recently, Fakhri and Chenaghlou [22] have also constructed the recursion relations on
the coefficients of associated hypergeometric functions (not the wavefunctions).
Here, in order to obtain the unnormalized excited wavefunctions, we use the standard
function analysis methods to solve equation (6). With the help of the energy spectrum
expression (21), we rewrite equation (6) in the form of[

d2

dr2
− Ṽ 1 cosech2 αr − Ṽ 2 coth αr

]
Fn,−1(r)

=
[
α2(n + η)2 +

(M + En,−1 − C)2V 2
2

4α2(n + η)2

]
Fn,−1(r). (23)

Introducing a new variable x = e−2αr and writing the upper component Fn,−1(r) as
fn,−1(x), we can transform the equation (23) into the following form:[

x2 d2

dx2
+ x

d

dx
− Ṽ 1x

α2(1 − x)2
− Ṽ 2(1 + x)

4α2(1 − x)
− (n + η)2

4

− (M + En,−1 − C)2V 2
2

16α4(n + η)2

]
fn,−1(x) = 0. (24)

The boundary conditions of Fn,−1(r) are finite when r → ∞ and Fn,−1(r) = 0 (r = 0)
can be turned to the boundary conditions of fn,−1(0) = 0 (r → ∞) and fn,−1(1) = 0
(r = 0). Writing the function fn,−1(x) as fn,−1(x) = xµ(1 − x)ηF (x), we find
equation (24) can be reduced to the following hypergeometric differential equation

x(1 − x)
d2F(x)

dx2
+ [2µ + 1 − (2µ + 2η + 1)x]

dF(x)

dx
− (2η + n)(2µ − n)F (x) = 0,

(25)

where µ = 1
2

[
n + η + (M+En,−1−C)V2

2α2
1

n+η

]
. In reducing equation (25), we have

applied Ṽ 1 = (M + En,−1 − C)V1 and Ṽ 2 = (M + En,−1 − C)V2. Equation (25)
is the well-known differential equation satisfied by the hypergeometric function
F(2η + n, 2µ − n, 2µ + 1; x). Hence we obtain the upper component Fn,−1(r) of the
radial wavefunction corresponding to energy level En,−1,

Fn,−1(r) = e−2αµr(1 − e−2αr )ηF (2η + n, 2µ − n, 2µ + 1; e−2αr ). (26)

Substituting Fn,−1(r) given in equation (26) into equation (3a) and considering that
k = −1, we obtain the lower spinor component Gn,−1(r) corresponding to the upper
component Fn,−1(r) and energy level En,−1,

Gn,−1(r) = − 1

M + En,−1 − C

×
[(

1

r
(1 − e−2αr )η + 2αµ(1 − e−2αr )η − 2αη e−2αr (1 − e−2αr )η−1

)

× e−2αµrF (2η + n, 2µ − n, 2µ + 1; e−2αr ) +
2α(2η + n)(2µ − n)

2µ + 1

× e−2α(µ+1)r (1 − e−2αr )ηF (2η + n + 1, 2µ − n + 1, 2µ + 2; e−2αr )

]
.

(27)
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Substituting Fn,−1(r) and Gn,−1(r) into equation (2), we can obtain the spinor
wavefunction for the Eckart potential with spin symmetry in the Dirac theory.
In order to make the upper component Fn,−1(r) and lower component Gn,−1(r) satisfy
the boundary conditions for the bound states, we observe equations (26) and (27) and
obtain the restriction inequality conditions: η > 1 and µ > 0. The energy level En,−1 is
defined implicitly by the energy equation (21) which is a rather complicated transcendental
equation having many solutions for a given value of n. For these solutions, we choose a
suitable one, which can make the upper spinor component Fn,−1(r) satisfy the restriction
condition for the bound states. For example, we take α = 1, V1 = 1, V2 = 1 and M = 4,
when n = 1, and solve equation (21) by using the computer software MAPLE to yield the
following values of E1,−1: −3.0486, 1.2790. We choose E1,−1 = 1.2790 as the solution
of equation (21), and find that the value of η is 2.85 and the value of µ is 2.27.

(b) For the case of exact pseudospin symmetry, i.e., d�
dr

= 0 or � = C = constant, equation
(4b) can be reduced to the following form:(

d2

dr2
− l̃(l̃ + 1)

r2
+ (M − Enk + C)	(r) +

(
E2

nk − M2 − C(M + Enk)
))

Gnk(r) = 0. (28)

From equation (28), we can see that the energy eigenvalues, Enk , depend only on n and l̃, i.e.,
Enk = E(n, l̃(l̃ + 1)). For l̃ �= 0, the states with j = l ± 1/2 are degenerate. This is a SU(2)
pseudospin symmetry. We take the Eckart potential [12] as the �(r),

�(r) = V1 cosech2 αr − V2 coth αr. (29)

Substituting equation (29) into equation (28), we obtain a Schrödinger-like equation for the
lower spinor component in the case of the s-wave (l̃ = 0, i.e., k = 1),(

− d2

dr2
+ Ṽ 1 cosech2 αr + Ṽ 2 coth αr

)
Gn,1(r) = ẼGn,1(r), (30)

where we have introduced the parameters Ṽ 1 = −(M − En,1 − C)V1, Ṽ 2 =
(M − En,1 + C)V2 and Ẽ = E2

n,1 − M2 − C(M + En,1). Using the same procedure of solving
equation (7), we obtain the energy equation for Eckart potential with pseudospin symmetry in
the Dirac theory,

M2 − E2
n,1 + C(M + En,1) = α2(n + η)2 +

(M − En,1 + C)2V 2
2

4α2

1

(n + η)2
, (31)

where the quantum number n = 0, 1, 2, 3, . . . . The unnormalized lower radial wavefunction
is given by

Gn,1(r) = e−2αµr(1 − e−2αr )ηF (2η + n, 2µ − n, 2µ + 1; e−2αr ), (32)

where µ and η are given by, respectively,

µ = 1

2

[
n + η − (M − En,1 + C)V2

2α2

1

n + η

]
and η = 1

2

(
1 +

√
1 − 4(M − En,1 + C)V1

α2

)
.

Substituting Gn,1(r) given in equation (32) into equation (3b) and considering that k = 1, we
obtain the upper spinor component Fn,1(r) corresponding to the lower component Gn,1(r) and
energy level En,1,

Fn,1(r) = 1

M − En,−1 + C

×
[(

1

r
(1 − e−2αr )η − 2αµ(1 − e−2αr )η + 2αη e−2αr (1 − e−2αr )η−1

)
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× e−2αµrF (2η + n, 2µ − n, 2µ + 1; e−2αr ) − 2α(2η + n)(2µ − n)

2µ + 1
e−2α(µ+1)r

× (1 − e−2αr )ηF (2η + n + 1, 2µ − n + 1, 2µ + 2; e−2αr )

]
. (33)

For a given value of n, equation (31) has many solutions for the energy level En,1; however, we
only choose a suitable one that can make the lower spinor component Gn,1(r) and the upper
spinor component Fn,1(r) satisfy the restriction conditions for the bound states, i.e., η > 1
and µ > 0. From equation (33), we can see that in the limit of pseudospin symmetry there are
only bound negative energy states; otherwise the upper spinor component Fn,1(r) will diverge.
With the help of equation (27), we find that in the limit of spin symmetry there are no bound
states with negative energy.

3. Conclusions

In conclusion, we may conclude that the Dirac equation for the Eckart potential with spin
and pseudospin symmetry can be solved exactly for s-wave bound states with the help of
the supersymmetric quantum mechanics approach and function analysis method. The energy
equations and corresponding spinor wavefunctions for the s-wave bound states have been
obtained analytically. Under the spin symmetry limitation, we recover the energy equation in
the Dirac theory with equal scalar and vector Eckart potentials.
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